Coronavirus treatments: Remdesivir, hydroxychloroquine and vaccines for COVID-19

Coronavirus treatments: Remdesivir, hydroxychloroquine and vaccines for COVID-19

The coronavirus has spread across the globe with speed and ferocity, reaching almost every country on the planet. The world has been sent into lockdown in an attempt to flatten the curve and prevent health care systems from being overwhelmed. Major events, including the Tokyo Olympics, have been postponed or canceled altogether. As health authorities and governments continue to mitigate extensive transmission in the community, scientists and researchers are turning their attention to another goal: Development of treatments and vaccines.

Since coronavirus was first discovered as the causative agent of COVID-19, scientists have been racing to get a better understanding of the virus’ genetic makeup and unravel how to effectively treat infections. There’s no cure and medical specialists can only treat the symptoms of the disease. Many different treatment options have been proposed and some older drugs seem to be associated with positive outcomes — but much more work is required. However, the long-term strategy to combat COVID-19, which has spread to every continent on Earth besides Antarctica, is to develop a vaccine.

Loading...

Developing new vaccines takes time, and they must be rigorously tested and confirmed safe via clinical trials before they can be routinely used in humans. Dr. Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases in the US, has frequently stated that a vaccine is at least a year to 18 months away. On Tuesday, Dr. Fauci said during a Senate hearing that he hoped to get some meaningful indication of progress by late fall or early winter, but tempered hopes of a vaccine coming out soon. He said the idea that a vaccine being able to facilitate a return to schools int he fall would be “a bit of a bridge too far.”

Experts agree there’s a ways to go yet.

Vaccines are incredibly important in the fight against disease. We’ve been able to keep a handful of viral diseases at bay for decades because of vaccine development. Even so, there exists confusion and unease about their usefulness. This guide explains what vaccines are, why they are so important and how scientists will use them in the fight against the coronavirus. It also discusses the current treatment options being used and those that show promise in hospitals.

As more candidates appear and are tested, we’ll add them to this list, so bookmark this page and check back for the latest updates.

You can jump to any segment by clicking the links below:

  • What is a vaccine?
  • What’s in a vaccine?
  • Making a COVID-19 vaccine
  • When will a vaccine be available?
  • First COVID-19 vaccine trials in the US
  • Australia’s ferret fixes
  • How do you treat COVID-19?
  • Trouble with chloroquine and hydroxychloroquine
  • Convalescent plasma therapy
  • How you can protect yourself from coronavirus now

What is a vaccine?

A vaccine is a type of treatment aimed at stimulating the body’s immune system to fight against infectious pathogens, like bacteria and viruses. They are, according to the World Health Organization, “one of the most effective ways to prevent diseases.”

The human body is particularly resilient to disease, having evolved a natural defense system against nasty disease-causing microorganisms like bacteria and viruses. The defense system — our immune system — is composed of different types of white blood cells that can detect and destroy foreign invaders. Some gobble up bacteria, some produce antibodies which can tell the body what to destroy and take out the germs, and other cells memorize what the invaders look like, so the body can respond quickly if they invade again.

Vaccines are a really clever fake-out. They make the body think it’s infected so it stimulates this immune response. For instance, the measles vaccine tricks the body into thinking it has measles. When you are vaccinated for measles, your body generates a record of the measles virus. If you come into contact with it in the future, the body’s immune system is primed and ready to beat it back before you can get sick.

The very first vaccine was developed by a scientist named Edward Jenner in the late 18th century. In a famous experiment, Jenner scraped pus from a milkmaid with cowpox — a type of virus that causes disease mostly in cows and is very similar to the smallpox virus — and introduced the pus into a young boy. The young boy became a little ill and had a mild case of cowpox. Later, Jenner inoculated the boy with smallpox, but he didn’t get sick. Jenner’s first injection of cowpox pus trained the boy’s body to recognize the cowpox virus and, because it’s so similar to smallpox, the young man was able to fight it off and not get sick.

Vaccines have come an incredibly long way since 1796. Scientists certainly don’t inject pus from patients into other patients, and vaccines must abide by strict safety regulations, multiple rounds of clinical testing and strong governmental guidelines before they can be adopted for widespread use………Read More>>

 

Source:- cnet

Share:
Loading...